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Static friction and arch formation in granular materials
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~Received 12 November 1997; revised manuscript received 13 February 1998!

We report experiments in two and three dimensions that show that the flow mode of a granulate confined in
a container strongly depends upon preparation. After a shock or a compressive stress, the granulate can flow
freely or exhibit fragmentation resulting from what we call ‘‘vaults hardening.’’ We analyze this effect in the
framework of a classical triangular bead pattern where the central particle is submitted to a vertical load. The
model includes the indetermination of static friction forces and a spring that mimics the elastic tension in a
chain of deformable particles. During reversal of gravity, we show that there is a locking mechanism that
maximizes the tension of the spring. Then, the magnitude of friction forces is also maximum and may be large
enough to prevent any motion of the central particle. This work can be looked upon as an approach to the more
general problem of the stability of contact chains in a granulate.@S1063-651X~98!13107-0#

PACS number~s!: 81.05.Rm, 46.10.1z, 47.27.Te, 64.75.1g
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I. INTRODUCTION

Despite their ubiquity in the surrounding world and the
huge industrial interest, granular materials still exhibit n
merous unexplained features that have attracted the atte
of an increasing number of physicists in the last decade@1#.
Among other problems, the frequent occurrence of sponta
ous partial or total clogging of ducts and pipes is of cruc
importance in industrial processing@2# and still needs to be
fundamentally understood. Illustrating the difficulty in tac
ling this problem from a unified standpoint, numerous e
periments and computer simulations have recently been
formed. For example, the running hourglass@3,4# stands as
an archetype of air~or gas!–particle interactions, which ar
an important cause of instability for flows in linear pipes@5#.
Dynamical simulations of particulate flows quite genera
show the occurrence of intermittences@6–8# under various
configurations. Granular fragmentation@9–11# may be seen
as another facet of the tendency of a granular piling to bu
up solid inner contact chains that support the overlying m
terial, lean on the side walls of the containers, and are kno
as vaults or arches. They are responsible for flow disco
nuities, which can be observed both in experiments and
computer simulations.

Whatever the processes put forward, the common fea
of these observations is a strong local compaction of
piling in certain regions of the space limited by the contain
walls that results in temporarily or permanently plugging
the flow. Depending on their specific characteristics, the
evant models explain the compaction and plugging as res
ing from the formation of dynamic arches@7#, from a sort of
traffic jam @6#, or else from the effect of a dynamic frictio
that tends to slow down the large blocks of flowing mater
more than it does the small ones@9#. Yet, all of these models
use a simple description ofdynamic friction interaction,
which states that the friction forceT, although possibly de-
pending on velocity, is single-valued and is most genera
given by an Amonton-Euler equation of the formT5 f dN,
wheref d is the dynamic friction coefficient andN the normal
pressing force.

Leaving aside the dynamic problem, which has recen
PRE 581063-651X/98/58~1!/805~8!/$15.00
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received some attention, it is tempting to try to get so
insight into the static situation. Due to the singularity~or the
nonsmooth character@12#! of the friction force at zero veloc-
ity, friction can be fully or partially mobilized (T< f N,
wheref is the static friction coefficient withf . f d), depend-
ing on preparation@13# and on the balance of other interac
ing forces. Henceforth, one may anticipate peculiar plugg
or clogging behaviors different from those in the dynamic
situation. Industrial reports repeatedly describe evidence
the permanent plugging of huge hoppers containing sa
charcoal, food grains of all sorts, etc. Also, they notice t
this permanent plugging quite often occurs after a prolon
period of rest. Then, the granular material seems to be fro
in, refuses to flow when the lower aperture of the hoppe
opened, and resists energetic perturbations~such as hamme
strokes! before flowing out. This effect may result from
some unknown physicochemical interaction between
grains that could occur during the rest period. As we show
the following through a series of laboratory experimen
there is some evidence that permanent plugging occurs e
in a supposedly nonreacting and dry material such as s
sand or granular chemical products. These experiments
others do show that permanent plugging depends on pr
ration. Such a dependence cannot directly arise from
mere extrapolation of the dynamical situation down to ze
velocity. Therefore, it turns out that the multivalued chara
ter of static friction needs to be accounted for.

The present approach to this problem lies within the lim
of our previous observations and models on the problem
progressive fragmentation@9,7#, which clearly identified
solid vaults to be responsible for dynamic clogging duri
guided vertical flows of granulates. These vaults or arc
were observed to have limited lifetimes. They erratica
built up and vanished during the downfall. On the contra
in the experiments presented here, they may happen
infinite duration and can even resist various moderate per
bations. It is therefore natural to consider that they are m
robust than in the dynamic case or, in other words, that th
must exist some process that leads tovault hardening. It is
the major goal of this paper to identify and estimate, at le
semiquantitatively, one of the basic processes that may
805 © 1998 The American Physical Society
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to such a phenomenon. All things considered, it may
looked upon as an attempt to the yet unsolved and m
general problem of the stability of granular contact chain

The second section of this paper is devoted to the desc
tion of a few experiments that can be rather easily rep
duced under various experimental conditions. Starting ei
from model or natural materials, they display evidence
long duration or permanent clogging, which depends on
initial preparation. Section III is devoted to introducing som
basic considerations about the indetermination of the equ
rium positions and forces in a simple spring-sliding mass
model. This model serves as an introduction to the anal
of a simplified model involving three spherical particles i
teracting via static Coulomb friction forces and submitted
a springlike horizontal restoring force~Sec. IV!. This basic
version of the constitutive element of a granular pack
exhibits a sort ofsnap-lock effectthat reflects the tendency o
the packing under vertical stress to build up hardened va
by aligning the particles along the direction of the restor
forces. Then, due to the mobilization of static friction force
the system is seen to retain a memory of the stress his
After removal of the vertical stress, it is left in a more ten
situation, which makes it able to resist vertical forces in b
upward and downward directions. Section V reports num
cal estimates providing support of the model and open
discussion about the limitations of the proposed analy
The possibility of computer simulations of vault hardeni
and permanent plugging effects is mentioned.

II. EXPERIMENTS

One can easily imagine small scale laboratory or table-
experiments able to mimic the permanent plugging eff
often encountered in large industrial devices. Here, we
scribe two typical and simple experiments that exhibit lo
duration or permanent clogging of a granular flow that wo
not occur under usual preparative conditions. The first
periment deals with a model granular sample made up
limited number of particles in reduced two dimensions~Sec.
II A !. It allows the observation of specific features that,
the present context, help guide the subsequent analys
permanent clogging. The second experiment concern
commonly used granular material enclosed in a cylindri
container~Sec. II B!. It allows one to get a deeper insigh
into the subtleties of the influence of the preparation mo
and, in particular, to distinguish between isotropic comp
tion and unidirectional~vertical! stress preparation. A sketc
of these experiments is reported in Fig. 1.

A. Particles in two dimensions

We have repeatedly observed permanent plugging in
course of several two-dimensional~2D! experiments per-
formed in flat glass walled cells~typically 15 cm310 cm;
1.6-mm width! filled with monodisperse 1.5-mm-diam ox
dized aluminum beads. Similar devices of various shapes
sizes have been extensively used in our laboratory in orde
investigate heaping@14#, size segregation@15#, and fragmen-
tation during vertical flow@9#. Due to the fact that the cel
width is only slightly larger than the bead diameter, the
experimental setups have been shown to eliminate the p
bility of getting a bead jam across the narrow direction of
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cell. In the course of our current experiments, the 2D cel
kept vertically on a stable support and closed with a mov
2D piston ~a thin 1-mm-thick metallic blade! that is sup-
ported by a cantilever spring pushed vertically by a stepp
motor. Although this setup was not specifically designed
generate permanent clogging but rather to analyze the st
tics of vaults in a vertically pushed 2D packing, we did o
serve in several instances that after a set of experiment
volving an upward pushing of the 2D pile the piston could
released downwards, resulting in an unexpected feature:
2D pile did not flow down as expected but would rema
compact and suspended in the cell supported by its low
row of beads, as shown in Fig. 1~1!. A careful examination
of the situation showed that this feature occurred in the c
when all the beads in the lowest row were in contact and a
in contact with both lateral walls, thereby forming a vau
spanning the space between the two lateral walls. As
pected, a slight lateral knock at the front windows wou
disturb this unstable situation and provoke the free flow
the whole packing.

B. Experiments with sepiolite in a 3D cylindrical container

Sepiolite ~hydrated silicate of magnesium H4MgSi3O10,
an equivalent of meerschaum, apparently similar to us
chalk! is a commonly used granular material. Our sample
made of nonspherical millimetric grains, with sizes rangi
between 0.2 and 6 mm. A 1-m-long leucite cylindrical tu
~inner and outer diameters 65 and 70 mm, respectively! is
half full of this granulate. Both ends of the container a
fitted with inner plastic caps that are not flush with the tu
but slightly recessed with respect to the tips. The sampl
initially prepared by gently pouring the granulate into t
vertical tube. The lower tip is initially A and we pour th
granulate through tip B. As we shall see, the preparat
mode turns out to be crucial here so that we have to foll
the process carefully.

~i! The subsequent to normal filling of the height reach
by the granulate in the tube ish1 ~say, 50 cm!. The tube is
kept vertical and A is the lowest tip@Fig. 1~2a!#.

~ii ! Now we turn the tube upside down at an angle
above the repose angle, and, as expected, the granulate
down continuously along the walls of the tube without sho
ing any fragmentation as sketched in Fig. 1~2c!.

FIG. 1. Two laboratory experiments exhibiting permanent clo
ging under specific preparation.~1! is a 2D experiment performed
in a flat cell while~2! reports a 3D experiment in a cylindrical tube
Each number refers to the description in text.
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PRE 58 807STATIC FRICTION AND ARCH FORMATION IN . . .
~iii ! Keeping the tube vertical, we knock the lowest t
~now tip B! of the tube once onto a hard floor. Due to com
paction, the height of the granulate in the tube is now sligh
reduced by about 1 cm. If now we turn the tube upside do
or incline it at an angle far above the repose angle, we
serve a completely different flow mode. Then the flow eith
stops or occurs via a series of successive and ascending
mentations, as we have previously reported in 2D exp
ments@9# and as sketched in Fig. 1~2b!. Occasionally, the
flow stops indefinitely, thereby showing permanent cloggi

~iv! Starting from the same initial situation as in step~iii !,
we first knock the lowest tip B, but next we knock the upp
tip A. The height is reduced by an additional fraction of
centimeter compared to step~iii !. We turn the tube upside
down: the granulate flows down continuously as in step~ii !
and does not exhibit any fragmentation nor permanent c
ging.

~v! Starting from the same initial situation as in step~ii !
~lowest tip A!, we tap repeatedly and energetically over t
lateral sides of the tube, thereby inducing a strong comp
tion of the granulate whose height is now reduced by abo
cm. If we now invert the tube, the flow occurs continuous
as in step~ii !.

This series of experiments shows reproducible resu
The flow mode depends directly on the tapping sequence
on the tip ~lower or upper! at which the tap is applied. By
contrast, tapping laterally induces efficient compaction
does not induce clogging. This experiment also works w
other commonly used granular materials. Harder mater
~such as spherical beads of silica! require a more energeti
sequence of taps~possibly with a hammer! in order to allow
the observation of similar behavior.

These experiments and some others~e.g., see the influ-
ence of the pouring mode in filling containers@17#! not only
exhibit the crucial importance of the preparation mode
also attract attention to the preparation anisotropy in the
ance of forces in the granulate. This anisotropy and the
that similar experimental observations can be made in 2D
3D with spherical beads allow one to rule out the possibi
that the observed effects are merely due to the formatio
geometric arches, which could be obtained with angular p
ticles. In particular, the sepiolite experiments indicate that
least under these circumstances, compaction@18–24# is not
merely and directly correlated to subsequent flow beha
and to clogging probability.

As we show in the following, the consideration of mob
lization of static friction forces in the course of preparation
able to render most~if not all! of the observed effects. Befor
attempting to build up a specific model for granulates and
order to introduce the problem, we now examine a sim
toy model, which helps us to understand the basic mec
nism that can explain how a contact chain in a granulate
keep the memory of the preceding history.

III. TOY MODEL AND MECHANICAL HYSTERESIS

We first examine the experimental setup sketched in F
2~a!. It consists of a rough block~massm) resting on a rough
inclined plane and attached from below to a spring. T
plane can be rotated around its lowest side fromu50 to p/2.
An elementary experiment consists in starting with the pla
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standing at a vertical position andslowly tilting the angleu
down to zero and back from 0 top/2. As expected, experi
ments show that the massm will gradually go down and
climb up along the board as the angleu is increased or de-
creased. Letx(u) be the elongation of the spring@which
means thatx(u)[0 at rest, i.e., ifm50#. If there were no
block-plane friction involved,x(u) would be a continuous
monotonic functionx(u)}sinu @central dotted line in Fig.
2~b!#. Instead, when a significant block-plane friction is i
volved, we observe that when increasing~decreasing! the
angleu, the block position follows a staircaselike process,
pictured~full lines! in Fig. 2~b!.

The weightmg (g is the acceleration of gravity! is bal-
anced in the normal direction by the reactionN5mg cosu
and in the tangential direction by the frictional resistance
motion F and the forceR due to the spring compression
According to Amonton’s friction law, the normalN compo-
nent results in generating a tangential force opposing rela
motion, which readsF5« f mg cosu, where« is a dimen-
sionless parameter that may take any value between11 and
21 and whose actual value is determined by the history
the process. In the following, we will consider for the sake
simplicity that the coefficient of dynamic friction is null.

Starting from a vertical position where the spring com
pression is maximum (xp/25mg/k, where k is the spring
force constant!, we decrease progressively and slowly t
angleu down to zero~thereby notingu2). At the very be-
ginning of the process, the friction forcemg« f cosu comes
into play and prevents the mass from sliding upwards unt«
reaches its maximum value«51, which determines the be
ginning of the sliding process. As long as«,1, the elonga-
tion remains equal toxp/2 . The position for which«51
~when the angle is different fromp/2) is determined by the
solution of the equation for the force balance in thex direc-
tion with no net force:

k

mg
xp/2515sin u1

21 f cosu1
2 . ~1!

FIG. 2. Spring-mass model displaying position indeterminat
due to static friction.~a! is a diagram of the balance of forces whe
the board is progressively tilted from horizontal to vertical when
friction force acts upwards.~b! schematically displays the sprin
deformation as a function of the angleu. The origin of the coordi-
nates is chosen at the equilibrium point of the spring without a
load. The process shown starts from its maximum value when
board is vertical and the elongation decreases toC when the board
is horizontal.C5mg f/k. The upper~lower! dotted line corresponds
to the limiting curve«511 («521).
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Then the mass slides upwards. In case of a null dyna
friction coefficient, the block would be subjected to the na
ral oscillation of a free spring-mass system. For the sake
simplification, we consider here that the spring motion
efficiently damped~e.g., with an additional dashpot!, so that
the spring elongation approaches exponentially the p
xu

1
25(mg/k)sinu1

2 («50). The process goes on through

succession of plateaus and ascents that are obtained
similar recursive procedure and that are defined by the a
u i

2 , which obeys the equation sinui
25(sinui11

2 1f cosui11
2 ).

As every step is linked to the preceding one, we see tha
successive positions depend on the previous position
brief, the spring elongation retains a memory of the previo
mass position, at every step.

Performing a reverse sequence, i.e., starting from a si
tion whenu50, we are faced with the definition of the initia
position. The mass can be initially set at any positionxi
satisfying the equationkxi5mg« f with «P@21,11#. When
u is increased the subsequent trajectory again shows plat
and up-motions in the (x,u) space determined by oscillation
of « between 0 and21. Under these circumstances, t
reverse trajectory in the (x,u) space separates from the pr
ceding one and lies below the descent trajectory, as repo
in Fig. 2~b!. The recursive procedure leads to successive
sitions obtained at angleu i

1 obeying sinui
15(sinui11

1

2f cosui11
1 ). In short, the mass can be initially set at a

position lying in the region delimited by the curve
(k/mg)x5sin u6f cosu in thex(u) diagram@dotted lines in
Fig. 2~b!#. Starting from a particular situation determin
definitely the subsequent process. Rather than numeric
solving the equations, the set of stable positions can be e
obtained by drawing the staircase picture on thex(u) dia-
gram, as shown in Fig. 2~b!.

Thus, as the angleu is successively increased and d
creased, the mass follows a staircaselike motion limited b
hysteresis cycle whose area reflects the irreversibility du
friction dissipation during the process. This observation
not novel in itself. It is related both to the well known stic
slip process in spring-mass models and to Mindlin and D
esiewicz’s investigation of the loading and unloading hyst
esis cycles of elastic spheres in contact@13#.

It will become apparent that the hysteretic behavior of
spring-mass system may be relevant to the understandin
the experiments described in Sec. II. As we will see in m
detail in Sec. IV B, it can be intuitively understood that t
elastic deformation of contact chains in a granulate can p
the role of the spring in the preceding toy model.

IV. FRICTION HYSTERESIS OF SPHERES IN CONTACT
IN A GRANULAR PACKING

A. Model

We turn back to the problem of a dense bead pack
made up of a large number of spherical particles confined
gravity to a vertical cylindrical container. We recall th
when the container is turned upside down, the state of st
may be such that the granular material will resist the pull
effect of gravity, and a transient or permanent vault struct
will be observed. Clearly, if we admit that the friction force
are responsible for the vault effect, the possibility for a va
ic
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to exist will depend on how the friction forces have be
mobilized before turning the container upside down. In oth
words, when gravity is reversed, the friction forces must
in the opposite direction to gravity and large enough. In
following, we present a heuristic model that captures so
of the features observed in the experiments. In the proces
gravity reversal, the model exhibits either a ‘‘vault harde
ing’’ or a ‘‘vault softening’’ behavior. Each of these behav
iors provides a very simple mechanism for the explanation
the fragmented flowing mode or the continuous flowi
mode. The selection of a specific behavior is mainly dep
dent on the stress history as the flowing mode in the exp
ments.

Let us consider a horizontal chain of spherical partic
squeezed between two rigid lateral walls. The particles lie
a floor and are forced to move horizontally as if they we
guided in a channel. The particles are deformable and th
are no frictional interactions among them. We suppose
the total deformation of the chain can be large enough for
additional particle A to be inserted. In a real situation, be
A would tend to dislodge a neighboring bead from the cha
but it is not the purpose of the model to study such an ins
bility. Particle A is supposed to have frictional contacts w
beads B and B8 ~see Fig. 3! and the friction forces can tak
any values in Coulomb’s cone of friction. The elastic r
sponse of the remaining particles is represented by a sp
between bead B (B8) and the lateral wall. For the sake o
simplicity, we suppose that bead A is moving vertically a
that beads B and B8 have symmetrical behaviors. We calla
the penetration angle, which is explicitly defined in Fig.
The variation of the anglea is mainly due to the elongation
of the lateral springs, and the contribution of the deform
tions of beads A, B, and B8 is neglected; bead A is subject t
a vertical and downward~positive! force 2Q, which includes
both the applied load on bead A and its own weight. T
load applied to bead A is varied slowly in a quasistatic wa
such that, at any time, static equilibrium is realized for t
whole system. As long as the friction forces have not reac
the Coulomb limit for sliding, bead A remains at rest, but t
friction forces evolve so as to balance the variation of
load on bead A. When the friction forces reach the slidi
limit, bead A can slide on beads B and B8 and move down
~or up! while keeping loadQ constant, until it reaches a
equilibrium for which no friction forces are mobilized as
the preceding toy model. Bead B is subject to a positive~i.e.,

FIG. 3. Balance of forces in the triangular basic pattern~see
text!. Bead A moves vertically while all other beads are movi
along a horizontal line. The weight of the beads and the vert
components of the forces are balanced by the reaction of a hori
tal channel depicted by the dotted lines.
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PRE 58 809STATIC FRICTION AND ARCH FORMATION IN . . .
from left to right! and horizontal compressive forceF from
the spring, which is only a geometrical function. Bead B
also subject to its own weightW and to a normal reaction
forceR, which prevents vertical motion either in the upwa
or downward direction. In a real situation, significant vertic
motion would be limited by the surrounding granular ma
rial. In the contact area with bead B (B8), bead A is submit-
ted to a normal loadNA (NA8 ) and a tangential loadTA (TA8 ),
while bead B (B8) is subjected to a normal load2NA

(2NA8 ) and a tangential load2TA (2TA8 ). The symmetry of
the problem implies thatNA5NA8 and TA5TA8 . Then, the
equilibrium of bead A reads

along the horizontal axis:

NA cosa2TA sin a2NA8 cosa1TA8 sin a50, ~2!

along thevertical axis:

TA cosa1NA sin a1TA8 cosa1NA8 sin a52Q. ~3!

Given the symmetry relations, the equilibrium is alwa
satisfied along thehorizontalaxis and the equilibrium along
the vertical axis is reduced to

TA cosa1NA sin a5Q. ~4!

Similarly, the equilibrium of bead B reads

along the horizontal axis: 2TA sin a1NA cosa5F,
~5!

along thevertical axis:

R2W2TA cosa2NA sin a50. ~6!

The equilibrium along the vertical axis can always be s
isfied by a suitable choice of reaction forceR. Thus, the
equilibrium of bead B simply requires that

2TA sin a1NA cosa5F. ~7!

Then, it is straightforward to find the following:

NA5Q sin a1F cosa,

TA5Q cosa2F sin a. ~8!

We introduce the friction condition, as in the precedi
section. It reads

TA5« f NA , «P@21,11#, ~9!

where f is the coefficient of static friction. Eventually,
gives a relationship betweenF andQ for a particular mobi-
lization of the friction forces~« value!:

F5Q
12« f tan a

tan a1« f
. ~10!

At a givena, and depending upon the loading or unloa
ing sequence,« ranges between@0,11# ~loading sequence!
and @0,21# ~unloading sequence!. When the friction bal-
ances and adjusts to the variation of the applied force~i.e.,
when u«u,1!, a is expected to remain constant. The anglea
l
-

t-

-

relaxes~increases or decreases! when the condition«561
is reached and we have to solve the no-friction problem~«
50! for a fixed loadQ. Under this slip condition, Eq.~10!
reduces toF5Q cota. Another relationship betweena and
F has to be found in order to determine the equilibrium sta
This relationship depends on the elasticity model for
granulate contact chains. Obviously and provided no glo
reorganization of the relative positions of the particles occ
under loading or unloading,F is expected to be a monoton
cally decreasing function ofa.

We do not know the detailed functionF(a), which is
largely dependent on the microscopic details of the be
bead interface and on the elasticity model considered for
contact interactions. Being monotonic,F(a) spans the range
Fmin to Fmax when a decreases fromp/3 down to 0. This
function is expected to scale differently according to t
model used for the description of the contact interaction
we denoteu(a) the longitudinal chain deformation, the sca
ing exponentb of the elastic forceF}@u(a)#b is 1 for a
linear model, 3/2 for the classical Hertz model, and 2 fo
‘‘soft crust’’ or multicontact model@25#. ThenF reads

F5@2~12cosa!Fmin
1/b 1~2 cosa21!Fmax

1/b #b

with b51,3/2,2, ~11!

whence, inserting expression~11! into Eq. ~10! provides the
Q(a) dependence:

Q5@2~12cosa!Fmin
1/b 1~2 cosa21!Fmax

1/b #b
tan a1« f

12« f tan a

with «P@21,11#. ~12!

For the sake of illustration, we consider here the case
linear spring model (b51) and takeFmin vanishingly small.
More sophisticated models for the contact interaction can
considered. However, provided that the basic assumptio
the monotonicity of theF(a) is preserved, the results wil
not separate, at least qualitatively, from the simple lin
case. Then Eq.~12! reduces to

Q5Fmax~2 cosa21!
tan a1« f

12« f tan a
. ~13!

The graph of this equation is given in Fig. 4.
The particular shape of thea dependence ofQ requires

some analysis. Using the same description as in Sec. III,
observe that the static friction condition implies that the re
resentative point of the equilibrium has to lie in the regi
delimited by the«511 and «521 curves, respectively
above and below the no-friction curve corresponding to«
50. This means that, at a given anglea, loading bead A
~i.e., increasing the loadQ) over the point notedL will result
in an abrupt relaxation of the system. The same feature
curs symmetrically if we reduce the load below the po
markedU ~unload! in the diagram. As we have seen prev
ously, the actual stable position of the representative poin
a given anglea lies on theUL segment and depends on th
preparation.

The ridged shapedQ(a) curve in Fig. 4 has a direct con
sequence that is relevant to the generic problem of the
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bility of vaults in a granulate. We first analyze the situati
when there is no friction («50). In the whole range@0,p/3#,
a decrease ofa results in an increase ofF, which reads
]aF,0. In contrast, independent of the model for the ch
deformation~i.e., if b51, 3/2, or 2!, the functionQ(a) is
not monotonic and happens to exhibit two distinct doma
where]aQ is positive, null, or negative. The region whe
]aQ is negative corresponds to a domain where the sp
drawback forceF increases when the loadQ is increased.
This results in a positive reaction, which tends to restore
initial anglea when the system is unloaded. On the contra
going into the domain where]aQ is positive corresponds to
triggering a sort of ‘‘snap-lock effect.’’ If the stressQ is
increased above the maximum in the curve«50 ~full line!
of Fig. 4, the system becomes unstable, since the loadQ is
larger than any equilibrium value. Then, the beads tend
align down toa50 instead of restoring the initiala starting
value, and the spring drawback forceF tends towards its
maximum value. As we see in the following, a combinati
of this snap-lock effect and the mobilization of frictio
forces may explain several unusual behaviors, such as v
hardening, as observed in Sec. II.

Now we turn back to the question of the mobilization
friction forces in the spirit of the spring-mass model exa
ined in Sec. III. We look for the detailed trajectories of t
system in theF(Q) space that is the analog to thex(u)
representation~see Fig. 3!. The graph of this function is
given in Fig. 5.

Starting from a given position (S in the figure!, i.e., from
a givenF and Q at a definite penetration anglea («50),
and increasing progressivelyQ, we can calculate analytically
the successive positions of the system using the same a
ments as in Sec. III. Rather than performing the comp
calculation, it turns out to be much more convenient to u
the diagrammatic representation pictured in Fig. 5. In
region where]QF is positive, the trajectory follows a serie
of stick-slip events such as those in the simple spring-m
model. This occurs until the pointP is reached. At this point
a slightly increasing forceQ will break the friction force and
trigger the snap-lock effect. The spring drawback forceF

FIG. 4. Q andF dependence on the penetration anglea in the
linear spring model. HereFmin50, Fmax5100 arb. units, andf
50.3. The set of the three curvesQ(a) are obtained for«50
~central full line! and «561 ~dashed lines!. L and U stand for
‘‘load’’ and ‘‘unload,’’ respectively~see text!. Forces are expresse
in arbitrary units.
n

s

g

e
,

to

ult

-

u-
e
e
e

ss

cannot balance the opposite resultant force on bead B du
the applied loadQ anymore, and this results in an abru
decrease of the penetration anglea down to some point
markedE2 in the figure. The process leading from pointP to
point E2 is an out-of-equilibrium process during which th
initially fixed force Q must decrease in order for the syste
to reach a new equilibrium state. The complete determina
of this equilibrium state depends on the time dependenc
the Q force, and could be performed by analytically solvin
the full mechanical problem. In view of the crude approx
mations of the present model~and in particular of the sim-
plification by which the dynamical friction coefficient i
zero!, we restrict this discussion to a semiquantitative d
scription and will not delve any further into the details of th
model.

Figure 5 provides a visual support of the terms ‘‘vau
hardening’’ and ‘‘vault softening’’ that we already used ea
lier in this paper. To simulate the reversal of gravity, the lo
Q is now slowly decreased and we search for stable posit
for which Q becomes negative. Whenever the system is i
situation for whichF,Fapex

«521 ~for example, pointE1), a
decrease in loadQ will lead to a decrease in the compressi
force F until it reachesF50 whenQ50 after successive
stick-slip events. Afterwards, ifQ becomes negative, ther
will be no friction forces to prevent bead A from losin
contact with beads B and B8. This is what we call ‘‘vault
softening’’ and corresponds to the continuous flowing mo
in the experiments. On the contrary, whenever the system
in a situation whenF.Fapex

«521 ~for example, pointE2), a
decrease in loadQ will lead to an increase in the compre
sive forceF, and negative values ofQ will eventually be
reached after successive stick-slip events. The maxim
negative valueQmax52fFmax is reached whena50 and«
521, i.e., when the compressive forceF is maximum. If
everQmax is large enough, bead A will be able to resist t
pulling effect of gravity. This is what we call ‘‘vault hard-
ening’’ and corresponds to a permanent clogging or a fra
mented flowing mode in the experiments.

The model can be related to the series of experime
reported in Sec. II as follows. Starting from usual preparat

FIG. 5. Representation of the behavior of the system in
F(Q) space. HereFmin50, Fmax5100 arb. units, andf 50.3. The
staircaselike dashed line shows a typical trajectory~see text!. The
three solid curves represent«51,0,21. Forces are expressed i
arbitrary units.
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conditions, the granulates flow normally when the contai
is turned upside down. After a static compression or a
quence of compressive shocks in one specific direction,
eral contact chains in the granular material, which are abl
resist the pulling forces due to the reversal of gravitatio
forces, are left in a more tense situation. Inversely, shock
the opposite direction@Sec. II B, step~iv!# tend to relax the
tension of the vaults thereby allowing a free flow mode.

B. Spring and drawback force: Numerical estimate

In the preceding section, we have shown that a sim
spring-rubbing mass model is, in principle, able to ren
several basic features of vault hardening. This model es
lishes a relationship between the geometry of a triang
pattern~through dependence ona) and the mobilization of
friction forces. It implies a significant relative motion of th
beads in the packing. A simple order of magnitude calcu
tion helps to show that this may occur under usual exp
mental conditions. In the following, we successively co
sider semiquantitatively the deformation of a linear chain
contacts and the consequence of the deformations of the
tainer walls within the context of the Hertz model.

Consider a vertical cylindrical container~radius R, see
Fig. 6! made up of a material whose Young’s modulus isE8.
The wall thickness ise!R. The container is filled with a
large number of spherical beads~radius r !R, Young’s
modulusE@E8). Let g be the gravitational acceleration an
suppose that a vertical fast motion~such as a shock! is able
to temporarily change the effective force by a positive
negative adimensional factorG.

Depending upon experimental conditions,uGu ranges be-
tween 1 and 10. We consider a typical contact chain on
;R/r particles that spans the space between both lat
walls in the container. LetFv be the typical vertical force
due to gravity, supported by a bead in the packing. Ba
Janssen arguments@16# indicate that a bead situated in th
bulk of the packing undergoes a maximum vertical stress
is typically equivalent to the weight of 2n beads. Ifr is the

specific mass of the beads, we haveFv5nGrg 8
3 pr 3. Again

using Janssen’s arguments@17#, we know that about a frac
tion K530% of the vertical stress is converted into a ho
zontal one directed towards the lateral walls. This results

horizontal force on a beadFh , such thatFh5nKGrg 8
3 pr 3.

FIG. 6. Definition of the parameters for calculating the over
deformation of the linear chain of contacts.
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If dh is the penetration of two beads in contact, one ea
finds that the retraction of a typical contact chain due
internal pressure in a granulate isD5ndh}n(Fh

2/E2r )1/3

}G2/3R5/3, which does not depend on the particle size. Us
typical numerical values~i.e., r52000 kg/m3,R50.1 m,
and E51010 N/m2), one finds that atG51 ~which means
under its own weight!, ndh is of order 10mm which can be
increased up to about 50mm under a shock at 10g. Using
softer materials for the beads such as leucite or, even m
sepiolite, allows us to cover a deformation range up to 1
mm which means a significant fraction of a typical bead
ameter. Note that this deformation is large enough to trig
the snap-lock effectunder a moderate external perturbatio
particularly if the force along the contact chain is close
Fapex.

In some typical experimental situations, the contain
walls are likely to undergo a much larger deformation th
the beads’ chain. These wall deformations can also ren
the effect of the spring deformation. The following simp
calculation can be performed. Suppose we consider a leu
tube whose Young’s modulus isE8. Suppose that the tube i
entirely filled with a granular material. In a layer of thickne
2r , there are typicallyN5pn beads in contact with the wal
and each bead applies a compressive forceFh . The cumula-
tive effects of these compressive forces create an equiva
pressure on the internal wall of the cylinder whose maxim
value can be written asp.NFh/2pRb, b being the diameter
of the contact circle at the bead-wall interface. The gene
solution for the stress distribution in a hollow cylinder wi
uniform internal and external pressures is a classical prob
@26# that is easily solved in polar coordinates (r ,u). If there
is no pressure applied on the external wall, and in the
proximation of small thicknesse!R, the general solution
reduces to a uniform tensile stresssu.pR/e, a tangential
strain«u.su /E8, and a radial displacementd r5R«u ,

d r.
Fh

E8b

NR

2pe
.

dh

2

E

E8

R2

2pre
.ndh

E

4E8

R

e
.D

E

4E8

R

e
.

In a typical example corresponding to the 3D experim
described in Sec. II B,R50.1 m, e51 mm, E85E/4, thus
D.10 mm, and even more if there is a shock, so that ty
cally d r.1 mm. It means that the deformation of the co
tainer walls can be several tens of times larger than the
formation of the contact chains. When subjected to
energetic shock, the wall deformation can be as large as
eral hundreds of micrometers~which can mean on the orde
of several particle sizes for powders or fine granular mat
als!. In large industrial vessels such as hoppers or tubes w
thin walls, the wall deformation can significantly contribu
to vaults hardening, as investigated in the present paper

V. DISCUSSION AND CONCLUSION

The present work shows that permanent plugging, wh
is frequently observed in industrial situations, can be read
obtained in small scale laboratory experiments using an
equate preparation of the granular material that otherw
would flow continuously. Starting from a few simple expe
ments and basic arguments, we attract attention to the cru
importance of the interplay of the geometry and mobilizati

l
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of friction forces in determining the stress equilibrium of
granulate confined in a container.

Our model takes advantage of a detailed analysis of
balance of forces, which includes friction mobilization a
reaction to compressive stresses in an elementary three-
model. It is seen that, under particular circumstances,
granular system can build up tense inner contact chains
are able to resist moderate perturbations. In turn, these h
ened vaults can oppose further internal motion, leading
permanent plugging or to fragmentation.

Besides using the classical Amonton static friction la
this model is based on the hypothesis that the granular
tem resists horizontal compression by mobilizing an ela
restoring force whose intensity depends monotonically
the compression. This is certainly a crude approximation
the case of plastic deformation that is likely to occur in ma
chemical or food grain materials. There, the snap-lock ef
may occur via plasticity or via a creeping process. Note t
under these circumstances and at the apex of the curv
Fig. 5, a slow creep is able to induce an abrupt relaxation
the grain positions, leading to a consolidation of the cont
chains. Within this context, we may speculate that this eff
would be at the origin of the vault hardening and perman
clogging observed in many industrial hoppers after a p
longed period of rest.
od
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Our model, which deals with a three-bead pattern, ov
simplifies the description of the complex network of forc
in a granulate, as depicted for example in@24#. The question
arises whether a correct computer simulation of these s
or quasistatic effects that originate from the basic static
determination of the friction forces is possible. At prese
most computer simulations in the physics of granular ma
rials make use of a dynamic description of the shock a
friction interactions. Quite generally, the algorithms a
implemented with a single-valued friction coefficient, and
permanent relative motion of the particles is required in
der to solve dynamical equations. The question arises of h
to know whether a full implementation of the static conta
interaction~such as in@27#! is able to render a correct de
scription of the vault hardening effect.
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